当前位置: 77779193永利官网 > 师资队伍 > 正文

师资队伍

站内搜索 :
通信工程系教师

赵晓晖

发布日期 :2017-11-17作者 :点击 :

姓名   赵晓晖 民族   满

出生日期   1957.11.10 工作单位   通信工程系
党派   九三学社 专业   通信工程专业
职称   教授 任职时间   2004年9月
硕导/博导   博士导师 聘任时间   2004年9月
行政职务
担任时间
办公电话   0431-85152181 个人主页   暂无
电子信箱
主要学历:
1978.03-1982.01 吉林工业大学 电气自动化专业 学士
1986.09-1989.06 吉林工业大学 电气自动化专业 硕士
1989.14-1993.11 法国贡比涅科技大学,应用数学与控制论专业 博士
1994.03-1996.03 东南大学 教育部自动化研究所 博士后
主要学术经历:
1996.03 东南大学 副教授
1996.09 长春邮电学院 教授
2000.05 吉林大学 教授 博导
研究方向及主要研究内容介绍:
通信中的信号处理理论与技术;认知无线电理论与技术(空时编码、动态资源分配、频谱感知、MIMO-OFDM系统中的信号处理);
能量收集系统;协同无线通信理论与技术;自由空间光通信理论与技术。
兼职情况:

承担的教学任务及授课对象:

培养研究生情况:
在读硕士10人,在读博士4人,已毕业128人。
承担过的主要科研项目:
(1) 长春市科技厅重大科技攻关计划,14KG023,具有自适应光学校正的自由空间光通信系统,2014/12-2016/12,20   万,在研,项目负责人。
(2) 国家自然科学基金面上项目,61171079,基于控制论和矩阵摄动理论的认知无线电系统动态资源分配问题研究,2012/01-2015/12,60   万,在研,项目负责人。
(3) 吉林省科技发展计划基金资助项目,20110356,智能家居系统的研究与开发, 2011/12-2013/12,20 万,结题,项目负责人。
(4) 国家自然科学基金面上项目,60971010,基于模块局部信息的可重构机械臂动力学控制与容错控制研究,2010/01-2013/12,36   万,结题,第一参加人。
(5) 国家自然科学基金面上项目,60972028,基于分布式网络的异构无线网络负载均衡方法研究,2010/01-2013/12,33   万,结题,第一参加人。
获得主要科研成果:
   [1]Zhang S Y, Zhao X H. Adaptive distributed power control based   on LQG regulator for cognitive radio network. Transaction on Control System   and Technology, 2017, (Submitted).
    [2]Zhang S Y, Zhao X H. Robust power control for cognitive radio networks   by LQG and L. IEEE Transaction on cognitive radio, 2017, (Submitted).
    [3]Pan S, Zhao X H. Liang Y C. Robust power allocation for OFDM based   cognitive radio networks: a switched affine based control approach. IEEE   Access, 2017, (Submitted).
    [4]Li H Q, Zhao X H. Power control for cognitive relay networks with   sensing uncertainties. IEEE Transaction on Vehicular Technology, 2017,   (Submitted).
    [5]Wang Y, Zhao X H, Liang H. Performance optimization for radio frequency   energy harvesting cognitive cooperative network with imperfect spectrum   sensing. IEEE Access, 2017, (Submitted).
    [6]Yang W W, Zhao X H. Resource allocation in two-way OFDM-based cognitive   radio networks with QoE and power consumption guarantee. EURASIP Journal on   Wireless Communications and Networking, 2017, (Submitted).
    [7]Wang Y Y, Zhao X H. Liang H. Throughput maximization based optimal power   allocation for energy harvesting cognitive radio networks with multiusers.   EURASIP Journal on Wireless Communications and Networking, 2017,   (Submitted).
    [8]Feng J F, Zhao X H. Performance analysis of FSO communication systems   with shred detector. Optics and Photonics, 2017, (Major revision).
    [9]Zhou M Y, Zhao X H. A Robust Energy Aware Power control Algorithm with   SINR-Flexible Requirement in Cognitive Radio Networks, Wireless Personal   Communications. 2017, ??(?):??. (Online).
    [10]Zhou M Y, Zhao X H. A robust energy efficiency power allocation   algorithm in cognitive radio networks. China Communications. 2017, ??(?):   (Accepted).
    [11]Yang W W, Zhao X H. Robust resource allocation for cognitive relay   networks with multiple primary users. EURASIP Journal on Wireless   Communications and Networking, 2017, ??(?):??-??. (Online).
    [12]Feng J F, Zhao X H. Performance analysis of OOK-based mixed FSO   communication systems in Gamma-Gamma turbulence with imprecise channel   models. Optics Communications, 2017, Vol 402, 1 Nov. 2017, 340-348.
    [13]Yang W W, Zhao X H. Robust resource allocation for orthogonal frequency   division multiplexing based cooperative cognitive radio networks with   imperfect channel state information. IET Communications, 2017, 11(2):   273-281.
    [14]Li Z K, Zhao X H. BP artificial neural network based wave front   correction for sensor-less free space optics communication. Optics   Communications, 2017, 385:219-228.
    [15]Zhu L, Zhao X H. Robust power allocation for OFDM based underlay   cognitive radio networks with channel uncertainties. Wireless Personal   Communications, 2017, 94(4): 3531-3547.
    [16]Liu Z H, Zhao X H. Laing H. Robust energy efficiency power allocation   for relay assisted uplink cognitive radio networks. Wireless Networks, 2017,   ??(?)??, (Online).
    [17]Zhu L, Zhao X H. Robust power allocation for orthogonal frequency   division multiplexing-based overlay/underlay cognitive radio network under   spectrum sensing errors and channel uncertainties. IET Communications, 2016,   10(15): 2010-2017.
    [18]Zhou M Y, Zhao X H. Energy efficient power allocation algorithm in   cognitive radio networks. IET Communications, 2016, 10(17): 2445-2451.
    [19]Zhang S Y, Zhao X H. Power allocation for sensing-based spectrum   sharing cognitive radio system with primary quantized side information. China   Communications, 2016, 13(9): 33-43.
    [20]Xu Y J, Zhao X H. Robust adaptive power control for cognitive radio   networks. IET Signal Processing, 2016, 10(1): 19-27.
    [21]Li H Q, Zhao X H, Xu Y J. Power control for cognitive relay networks   with sensing uncertainties. EURASIP Journal on Wireless Communications and   Networking, 2016, 2016(1): 1-15.
    [22]Ding X, Liu C H, Wang L C, Zhao X H. Coexisting success probability and   throughput of multi-RAT wireless networks with unlicensed band access. IEEE   Wireless Communications Letters, 2016, 5(1): 4-7.
    [23]Chen L L, Zhao X H. An improved power control AFSA for minimum   interference to primary users in cognitive radio networks. Wireless Personal   Communications, 2016, 87(1): 293-311.
    [24]Wang T T, Zhao X H. Hybrid atmospheric compensation in frees space   optics communication. Journal of the Optical Society of Korea, 2016, 20(1):   13-21.
    [25]Li Z K, Zhao X H. Kalman filter based optimal controllers in free space   optics communication. Journal of the Optical Society of Korea, 2016, 20(3):   368-380.
    [26]Feng J F, Zhao X H. Asymptotic performance analysis of free space   optical links with transmit diversity. Journal of the Optical Society of   Korea, 2016, 20(4): 451-463.
    [27]Feng J F, Zhao X H. Performance analysis of mixed RF/FSO systems with   STBC users. Optics Communications, 2016, 381: 244-252.
    [28]Xu Y, Zhao X H. Robust power control and beam-forming in cognitive   radio networks: a survey. IEEE Communications Surveys and Tutorials, 2015,   1834-1857
    [29]Li Z K, and Zhao X H. Atmospheric compensation in free space optical   communication with simulated annealing algorithm. Optics Communications,   2015, 38(1): 11-21.
    [30]Li Z K, Zhao X H. Swarm intelligence for atmospheric compensation in   free space optical communication-modified shuffled frog leaping algorithm.   Optics and Laser Technology, 2015, 66:89-97.
    [31]Li Z K, Zhao X H. Model-based Tabu search algorithm for free space   optical communication with a novel parallel wave front correction system.   Journal of the Optical Society of Korea, 2015, 19(1): 45-54.
    [32]Xu Y J, Zhao X H. Distributed power control for multiuser cognitive   radio networks with QoS and interference temperature constraints. Wireless   Communications and Mobile Computing, 2015, 15(14):1773-1783.
    [33]Xu Y J, Zhao X H. Robust power control for underlay cognitive radio   networks under probabilistic quality of service and interference constraints.   IET Communications, 2014, 8(18): 3333-3340.
    [34]Xu Y J, Zhao X H. Robust power control for multiuser cognitive radio   networks under QoS constraints and interference temperature constraints.   Wireless Personal Communications, 2014, 75(4): 2383-2397.
    [35]Xu Y J, Zhao X H. Robust probabilistic distributed power control   algorithm for underlay cognitive radio networks under channel uncertainties.   Wireless Personal Communications, 2014, 78(2): 1297-1312.
    [36]Xu Y J, Zhao X H. Mixed power control strategies for cognitive radio   networks under SINR and interference temperature constraints. Radio   Engineering, 2014, 23(2): 586-593.
    [37]Liang H, Zhao X H, Zhang W. Optimal power allocation for multichannel   energy harvesting cognitive radio. IEEE International Symposium on a World of   Wireless Mobile and Multimedia Networks, (WoWMoM), Macau, China, June, 2017,   (Accepted).
    [38]Zhang S Y, Zhao X H. Distributed power control based on L and LQG   regulator for a cognitive radio network. 2017 IEEE 86th Vehicular Technology   Conference, (VTC), Toronto, Canada, September, 2017, (Accepted).
    [39]Yang W W, Zhao X H. QoE-oriented resource allocation in two-way   OFDM-based cognitive radio networks. IEEE Global Communications Conference   (GLOBECOM), Singapore, December, 2017, (Submitted).
    [40]Pan S, Zhao X H, Liang H. Lyapunov function based robust power control   with SINR target for cognitive radio networks. IEEE Global Communications   Conference (GLOBECOM), Singapore, December, 2017, (Submitted).
    [41]Yang W W, Zhao X H. Robust relay selection and power allocation for   OFDM-Based cooperative cognitive radio networks. IEEE Global Communications   Conference (GLOBECOM), Washington, USA, 2016, 1-6.
    [42]Xu Y J, Zhao X H, Hu F Y, et al. Interference minimization based power   allocation for cognitive radio networks with imperfect spectrum sensing, 2016   IEEE Wireless Communications and Networking Conference (WCNC), Hawaii, USA,   2016.
    [43]Liang H, Zhao X H. Optimal power allocation for energy harvesting   cognitive radio networks with primary rate protection. IEEE 2016   International Conference on Computing, Networking and Communications (ICNC),   Doha, Qatar, 2016.
    [44]Li H Q, Zhao X H. Min-max BER based power control for OFDM based   cognitive cooperative networks with imperfect spectrum sensing. CROWN COM   2016, Grenoble, France, 2016, 654-667.
    [45]Xu Y J, Zhao X H. Robust rate maximization for OFDM-based cognitive   radio networks. IEEE Global Signal and Information Processing Conference   (GLOBSIP), Atlanta, USA, 2014, 1363-1366.
   
上一条:康健

版权所有 77779193永利(中国)-官方网站